Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.12.23.22283896

ABSTRACT

Here, by using mass spectrometry-based methods IgG1 and IgA1 clonal repertoires were monitored quantitatively and longitudinally in more than 50 individual serum samples obtained from 17 COVID-19 patients admitted to intensive care units because of acute respiratory distress syndrome. These serological clonal profiles were used to examine how each patient reacted to a severe SARS-CoV-2 infection. All 17 donors revealed unique polyclonal repertoires and changes after infection. Substantial changes over time in the IgG1 and/or IgA1 clonal repertoires were observed in individual patients, with several new clones appearing following the infection, in a few cases leading to a few very high abundant IgG1 and/or IgA1 clones dominating the repertoire. Several of these clones were de novo sequenced through combinations of top-down, middle-down and bottom-up proteomics approaches. This revealed several sequence features in line with sequences deposited in the SARS-CoV-specific database of antibodies. In other patients, the serological Ig profiles revealed the treatment with tocilizumab, as after treatment, this IgG1-mAb dominated the serological IgG1 repertoire. Tocilizumab clearance could be monitored and a half-life of approximately 6 days was established in these patients. Overall, our longitudinal monitoring of IgG1 and IgA1 repertoires of individual donors reveals that antibody responses are highly personalized traits of each patient, affected by the disease and the chosen clinical treatment. The impact of these observations argues for a more personalized and longitudinal approach in patients diagnostics, both in serum proteomics as well as in monitoring immune responses.


Subject(s)
COVID-19 , Respiratory Distress Syndrome
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.01.470767

ABSTRACT

Delineating the origins and properties of antibodies elicited by SARS-CoV-2 infection and vaccination is critical for understanding their benefits and potential shortcomings. Therefore, we investigated the SARS-CoV-2 spike (S)-reactive B cell repertoire in unexposed individuals by flow cytometry and single-cell sequencing. We found that ~82% of SARS-CoV-2 S-reactive B cells show a naive phenotype, which represents an unusually high fraction of total human naive B cells (~0.1%). Approximately 10% of these naive S-reactive B cells shared an IGHV1-69/IGKV3-11 B cell receptor pairing, an enrichment of 18-fold compared to the complete naive repertoire. A proportion of memory B cells, comprising switched (~0.05%) and unswitched B cells (~0.04%), was also reactive with S and some of these cells were reactive with ADAMTS13, which is associated with thrombotic thrombocytopenia. Following SARS-CoV-2 infection, we report an average 37-fold enrichment of IGHV1-69/IGKV3-11 B cell receptor pairing in the S-reactive memory B cells compared to the unselected memory repertoire. This class of B cells targets a previously undefined non-neutralizing epitope on the S2 subunit that becomes exposed on S proteins used in approved vaccines when they transition away from the native pre-fusion state because of instability. These findings can help guide the improvement of SARS-CoV-2 vaccines.


Subject(s)
COVID-19 , Purpura, Thrombotic Thrombocytopenic
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.27.21264163

ABSTRACT

BackgroundEmerging and future SARS-CoV-2 variants may jeopardize the effectiveness of vaccination campaigns. Therefore, it is important to know how the different vaccines perform against diverse SARS-CoV-2 variants. MethodsIn a prospective cohort of 165 SARS-CoV-2 naive health care workers, vaccinated with either one of four vaccines (BNT162b2, mRNA-1273, AZD1222 or Ad26.COV2.S), we performed a head-to-head comparison of the ability of sera to recognize and neutralize SARS-CoV-2 variants of concern (VOCs; Alpha, Beta, Gamma, Delta and Omicron). Repeated serum sampling was performed 5 times during a year (from January 2021 till January 2022), including before and after booster vaccination with BNT162b2. FindingsFour weeks after completing the initial vaccination series, SARS-CoV-2 wild-type neutralizing antibody titers were highest in recipients of BNT162b2 and mRNA-1273 (geometric mean titers (GMT) of 197 [95% CI 149-260] and 313 [95% CI 218-448], respectively), and substantially lower in those vaccinated with the adenovirus vector-based vaccines AZD1222 and Ad26.COV2.S (GMT of 26 [95% CI 18-37] and 14 [95% CI 8-25] IU/ml, respectively). These findings were robust for adjustment to age and sex. VOCs neutralization was reduced in all vaccine groups, with the largest (9- to 80-fold) reduction in neutralization observed against the Omicron variant. The booster BNT162b2 vaccination increased neutralizing antibody titers for all groups with substantial improvement against the VOCs including the Omicron variant. Study limitations include the lack of cellular immunity data. ConclusionsOverall, this study shows that the mRNA vaccines appear superior to adenovirus vector-based vaccines in inducing neutralizing antibodies against VOCs four weeks after initial vaccination and after booster vaccination.

4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.26.21256092

ABSTRACT

Current SARS-CoV-2 vaccines are losing efficacy against emerging variants and may not protect against future novel coronavirus outbreaks, emphasizing the need for more broadly protective vaccines. To inform the development of a pan-coronavirus vaccine, we investigated the presence and specificity of cross-reactive antibodies against the spike (S) proteins of human coronaviruses (hCoV) after SARS-CoV-2 infection and vaccination. We found an 11 to 123-fold increase in antibodies binding to SARS-CoV and MERS-CoV as well as a 2 to 4-fold difference in antibodies binding to seasonal hCoVs in COVID-19 convalescent sera compared to pre-pandemic healthy donors, with the S2 subdomain of the S protein being the main target for cross-reactivity. In addition, we detected cross-reactive antibodies to all hCoV S proteins after SARS-CoV-2 S protein immunization in macaques, with higher responses for hCoV more closely related to SARS-CoV-2. These findings support the feasibility of and provide guidance for development of a pan-coronavirus vaccine.


Subject(s)
COVID-19 , Poult Enteritis Mortality Syndrome
5.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3732360

ABSTRACT

The SARS-CoV-2 pandemic is continuing to disrupt personal lives, global healthcare systems and economies. Hence, there is an urgent need for a vaccine that prevents viral infection, transmission and disease. Here, we present a two-component protein-based nanoparticle vaccine that displays multiple copies of the SARS-CoV-2 spike protein. Immunization studies show that this vaccine induces potent neutralizing antibody responses in mice, rabbits and cynomolgus macaques. The vaccine-induced immunity protected macaques against a high dose challenge, resulting in strongly reduced viral infection and replication in upper and lower airways. These nanoparticles are a promising vaccine candidate to curtail the SARS-CoV-2 pandemic.Funding: This work was supported by a Netherlands Organization for Scientific Research (NWO) Vici grant (to R.W.S.); by the Bill & Melinda Gates Foundation through the Collaboration for AIDS Vaccine Discovery (CAVD) grants OPP1111923, OPP1132237, and INV-002022 (to R.W.S. and/or N.P.K.), INV-008352/OPP1153692 and OPP1196345/INV-008813 (to M.C.), and grant OPP1170236 (to A.B.W.); by the Fondation Dormeur, Vaduz (to R.W.S. and to M.J.v.G.) and Health Holland PPS-allowance LSHM20040 (to M.J.v.G.); the University of Southampton Coronavirus Response Fund (to M.C.); and by the Netherlands Organisation for Health Research and Development ZONMW (to B.L.H). M.J.v.G. is a recipient of an AMC Fellowship from Amsterdam UMC and a COVID-19 grant from the Amsterdam Institute for Infection and Immunity. R.W.S and M.J.v.G. are recipients of support from the University of Amsterdam Proof of Concept fund (contract no. 200421) as managed by Innovation Exchange Amsterdam (IXA). The Infectious Disease Models and Innovative Therapies (IDMIT) research infrastructure is supported by the ‘Programme Investissements d’Avenir, managed by the ANR under reference ANR-11-INBS-0008. The Fondation Bettencourt Schueller and the Region Ile-de-France contributed to the implementation of IDMIT’s facilities and imaging technologies. The NHP study received financial support from REACTing, the National Research Agency (ANR; AM-CoV-Path) and the European Infrastructure TRANSVAC2 (730964). Conflict of Interest: N.P.K. is a co-founder, shareholder, and chair of the scientific advisory board of Icosavax, Inc. All other authors declare no competing interests.Ethical Approval: The protocols were approved by the institutional ethical committee “Comité d’Ethique en Expérimentation Animale du Commissariat à l’Energie Atomique et aux Energies Alternatives” (CEtEA #44) under statement number A20-011. The study was authorized by the “Research, Innovation and Education Ministry” under registration number APAFIS#24434-2020030216532863v1.


Subject(s)
Acquired Immunodeficiency Syndrome , Communicable Diseases , Protein-Energy Malnutrition , Disease Models, Animal , COVID-19
6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.07.365726

ABSTRACT

The SARS-CoV-2 pandemic is continuing to disrupt personal lives, global healthcare systems and economies. Hence, there is an urgent need for a vaccine that prevents viral infection, transmission and disease. Here, we present a two-component protein-based nanoparticle vaccine that displays multiple copies of the SARS-CoV-2 spike protein. Immunization studies show that this vaccine induces potent neutralizing antibody responses in mice, rabbits and cynomolgus macaques. The vaccine-induced immunity protected macaques against a high dose challenge, resulting in strongly reduced viral infection and replication in upper and lower airways. These nanoparticles are a promising vaccine candidate to curtail the SARS-CoV-2 pandemic.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL